Ergonomic Exposure Assessment

Angela Dartt, PhD, AEP

Ergonomics

- *Ergon* = Work
- *Nomos* = Natural Laws of

- Interaction between human capabilities and the work environment

International Ergonomics Association (IEA), 2000

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data, and other methods to design in order to optimize human well-being and overall system performance.
Goals of Ergonomics

- Effectiveness and Efficiency of Work
 - Efficient/increased production
 - Improve product quality
 - Reduce errors

- Enhance desirable human values
 - Improve quality of work life
 - Optimize health and safety
 - Reduce fatigue and stress
Occupational Exposures

- High repetition
- Excessive force
- Awkward postures
- Vibration
- Insufficient recovery
- Extreme temperature
- Contact stress
- Psycho-social

Multifactorial!!!

Outcomes

- WMSDs: work-related musculoskeletal disorders
 - Carpal tunnel syndrome
 - Epicondylitis
 - Rotator cuff
 - Low back pain

- So why do we care???
 - Most prevalent
 - Most costly
 - Occur across all occupations
Exposure Assessment

- Systematic review of the processes, practices, materials, and division of labor present in a workplace that is used to define and judge all exposures for all workers on all days

The Occupational Environment: Its Evaluation, Control, and Management
AIHA, 2003

Why is Exposure Assessment Important?

- Reduce the risk of injury/illness
- Evaluate the risks present
- Prioritize & implement controls
- Relate exposure to disease outcome
- Estimate work requirements
- Validate perception of a task
- Determine stress on the body
Why is Exposure Assessment Difficult?

- Risk factors and outcomes are not well understood
- Exposures are difficult to quantify
- Adequate exposure assessment is very complex
- Risk factors are not independent of the worker
- An increase in exposure is not linearly associated with an increase in risk
- The most common outcome is pain (non-specific)

Types of Exposure Assessment

- Qualitative
- Semi-quantitative
- Quantitative

- Depends on:
 - Purpose
 - Time
 - Cost
 - Outcome significance
Qualitative

- Professional judgment and experience
- Walk-through survey
- Checklists, JSA, JHA
- Direct observation
- Video/camera

Advantages
- Simplicity and speed
- Assess a large # at low cost

Disadvantages
- Moderate reliability
- Only produces data such as presence/absence

- National Institute for Occupational Safety and Health (NIOSH)
 - NIOSH Elements of Ergonomics (Pub No. 97-117)

- Occupational Safety and Health Administration (OSHA)
 - Guidelines: Poultry, Retail, Nursing & Shipyard
 - Industry Specific eTools

- Washington Department of Labor and Industries (WISHA)

- American Conference of Governmental Industrial Hygienists (ACGIH)
 - Lifting TLV’s

- Trade and professional association guidelines
Semi-Quantitative

- RULA and REBA (Cornell University)
 - Whole body

- Liberty Mutual MMH Tables
 - Push/pull, carry, lift/lower

- Rodgers Muscle Fatigue Analysis
 - Whole body

- ACGIH TLV Hand Activity Level (HAL)

Advantages
- Assess large # at relatively low cost
- Relatively easy to use
- Provides some quantitative data

Disadvantages
- Observation is time consuming
- Subjective judgments still involved
- Reliability and validity not demonstrated for many of these
Quantitative

- Biomechanical analyses
- NIOSH Revised Lifting Equation (Pub No. 94-110)
- Strain Index
- Vibration analysis

“Direct Measures”
- Electromyography (EMG)
- Electrogoniometry
- Accelerometry, Inclinometry
- Nerve conduction
- Heart rate, blood pressure, VO₂

http://www.nexgenergo.com/index.html

Quantitative

Advantages
- Good reliability and validity
- High level of detail

Disadvantages
- Expensive
- Time consuming
- May interfere with worker
- Difficult for large workforces
Exposure Assessment Research

Study 1
- Rater Reliability
- 2 Raters Cyclic Tasks
- Neck, Shoulder, Wrist

Study 2
- Rater Reliability Expanded
- 4 Raters Cyclic & Non-Cyclic Tasks
- Neck, Shoulder, Wrist

Study 3
- Inter-Method Reliability
- Video Observation vs Inclinometry
- Shoulder, Trunk

Study 4
- Sampling Strategy
- Inclinometry
- Shoulder, Trunk
- Comparison of Sampling Durations
Reliability and Validity

Observation of Posture from Video

- Low cost
- Relatively quick analysis time

Challenges
- Work environment
- Cyclic vs non-cyclic
- Rater judgments
Multimedia Video Task Analysis (MVTA)
Ergonomics Analysis and Design Consortium – University of Madison, Wisconsin

Rater Reliability of Neck Postures

G-Coeficient

Neutral Flexion >45° Extension >20° Miss na Data

Posture

Rater 1
Rater 2
Rater 3
Rater 4
Convergent Validity

- Cross-validation
- Video observation (MVTA) vs Inclinometry
- Brewing industry
 - 3 major work areas
 - 7 repetitive tasks

Inclinometry
Left Upper Arm Results

0°-44°

45°-90°

> 90°
Sampling Strategy

- Compare different sampling durations
- Full-shift (~8 hours) inclinometry
- Brewing industry
 - 3 major work areas
 - 7 repetitive tasks

Video 1

Video 2
Results

Right Upper Arm

<table>
<thead>
<tr>
<th>Duration Category (seconds)</th>
<th><5</th>
<th>>5</th>
<th>>45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posture Category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><45°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Difference</td>
<td>-0.148</td>
<td>-1.041</td>
<td>-1.094</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.075</td>
<td>-0.324</td>
<td>-0.165</td>
</tr>
<tr>
<td>Upper Limit of Agreement</td>
<td>3.793</td>
<td>5.395</td>
<td>12.164</td>
</tr>
<tr>
<td>45°-90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Difference</td>
<td>0.418</td>
<td>1.040</td>
<td>1.225</td>
</tr>
<tr>
<td>Bias</td>
<td>0.243</td>
<td>0.374</td>
<td>0.278</td>
</tr>
<tr>
<td>Upper Limit of Agreement</td>
<td>3.815</td>
<td>6.597</td>
<td>10.047</td>
</tr>
<tr>
<td>Lower Limit of Agreement</td>
<td>-1.021</td>
<td>-4.517</td>
<td>-7.397</td>
</tr>
<tr>
<td>Width of Limit of Agreement</td>
<td>6.879</td>
<td>11.114</td>
<td>17.644</td>
</tr>
<tr>
<td>>90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Difference</td>
<td>-0.319</td>
<td>0.018</td>
<td>-0.173</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.522</td>
<td>0.018</td>
<td>-0.046</td>
</tr>
<tr>
<td>Upper Limit of Agreement</td>
<td>0.904</td>
<td>2.049</td>
<td>7.390</td>
</tr>
<tr>
<td>Lower Limit of Agreement</td>
<td>-1.541</td>
<td>-2.013</td>
<td>-7.736</td>
</tr>
<tr>
<td>Width of Limit of Agreement</td>
<td>2.445</td>
<td>4.062</td>
<td>15.126</td>
</tr>
</tbody>
</table>
Acknowledgments

Funding institutions:
- NIOSH Training Program Grant at CSU
- NIOSH Grant #R01/OH 007945-03 from the University of Iowa
- RMCOEH
- MAP-ERC

Committee: John Rosecrance (Advisor), David Douphrate, Peter Chen, David Gilkey, and William Brazile

University of Iowa researchers: Fred Gerr, Dan Anton, Linda Merlino, Nate Fethke

CSU Statistical Laboratory

New Belgium Brewing

Publications

Dartt et al. Convergent validity of video observation and inclinometry in the assessment of postures among manufacturing workers. In progress: *Ergonomics*

Dartt et al. Measures of Reliability for Assessing Postures among Workers in Manufacturing Tasks. In progress: *Journal of Occupational and Environmental Health*